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EQUATIONS OF MOTION OF A CARRIER SUPPORTING DYNAMICALLY UNBA~NCED AND 
ASYMMETRIC FLYWHEELS IN AN INERTIAL MEDIUM* 

V.A. KONOPLEV 

Themethodsdescxibedin /l-5/ are used to derive the equations of motion 
of a body supporting dynamically unbalanced and asymmetric flywheels in 
an inertial fluid. The equations combine the accuracy of inclusion of 
inertial effects with the compactnessofmatrix notation, with the con- 
venience of constructing the computational procedures based on modern 
matrix processing facilities of the digital computer without resorting 
to the scalar equations. The equations obtained are used to formulate 
a problem of programmed rotation of flywheels, ensuring that the carrier 
moves as required, provided it exists. 

The equations obtained can be used for a straightforward investigation 
of the motion of a vibrating table under the condition that the position, 
the inertial characteristics and the modes of motion are all known, and 
for determining the above characteristics which ensure that the table 
moves in a prescribed manner (the control problem). 

We shall use, for simplicity, a single symbol I?* = (Ok, [e&l) for all rigid bodies of the 
system, and for the associated Cartesian systems coordinate with the origin Okand an ortho- 

normed basis, lekl = (elk, es’. esk), elk = II 1. 0, 0 IITI,e2k = Ii 0, 1, 0 IIT, eak = II 0, 0, 1 III, Tea that E, will 

denote the inertial coordinate system, f?, isthebody of the carrier, E, (p = 2,3,.:‘.,njthe 
instruments under test installed on E,, E, (s = 2,3, . . . . m) are the flywheels, including those 
which may be mounted on the instruments under test. 

The dynamic screw of such a system is described in E, in the form 

Here Zll is the same screw in E,; L,O* = T,~"[C,'1 is a 
/l/, and 

(6 X 6)-matrix situated in E, 

where <O,@)O is a skew symmetric (3 X 3) matrix generated by the position vector iI,@@ of 

0, in B,, on the basis [e"l; E is a unit (3 X 3) matrix, ,c,O = C8 W C, (6,) C, f~) is a (3 X 3) 
matrix of the orientation [.@I on [d, z([e'] = (@I C,o) is the simplest (3 X 3) matrix of 
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rotation by the angle 5~ with unit vector e$(i = 1,2,3), and q = ]]o,", ql, %, '~~11~ c= R, is the 
vector of generalized coordinates of E,. We have adopted above a "ship-like" sequence of 
rotations. When using the "aircraft" or Eulerian angles, we should adopt C,' = C, ($,)C,(O,) 

C, (R) or c,o = C, (91J.G (cpl) C, (%2) respectively /l, 6/. 
The following notation is used in (2): @,‘,O,p,@aa are the (6 X 6) Mises inertia 

matrices, E,,E, and E, III; Ai,,". A,,lpl are the (6 x 6) matrices of attached masses E, and 
E,, are computed in E, [21; I+ II: E, +Ek (k = p,s) as in (31, and the quantities $,,@, in the 
matrices C,1 = C, (%,,)C2 (0,) C, (9.) are constant angles of orientation of the flywheels E, in 
gS],~n iaretheanglesof rotaF:nofthe flywheels, 0," are position vectors of the flywheels 

r onthebasis [e'l; VI - 11 ulol, ololjlr is thevectorofquasivelocitiesof E,; f, = jlO,e,*IlrE 

R,, et is the unit vector of the axis of rotation of the flywheels E, by the angle CF.,. 
The left lower <r,‘>‘m, and right upper (r2pTrns (3 x 3) block of matrices 9," define the 

part of inertial effects determined by the dynamic imbalance of the flywheels (reSSE E, is the 
radius vector of the centre of mass of the flywheel in E, and the basis ]k]), the second part 
of the effects is determined by the dynamic asymmetry of the flywheels (e,:# f),," are the 
moments of inertia in the matrix 8,O of the inertia tensor represented by the lower (3 X 3) 
block of the matrix e,"). Using the theorem on the change in kinetic screw of the system 
and taking into account (l), we obtain /l/ 

z;* + tD,O’Z, = F ’ 1 

Z:*= K,Vt'* + Ki*V,O' + 5 L,“e,“f,cp,” + sj2 L,” l(e,d>18,8f,(F5. 
s=9 

(4) 

(3 

K:* = 5 L,*l ([(et)] 8,” - 8,” [<et>]) L?’ *qSe 
8==2 

(6) 

(7) 

Here [<el">] is a block diagonal (6 x 6) matrix with the blocks <al">) on the principal 
diagonal; Pkk (k = l,p,s) is the sum of the dynamic screws of the external forces acting on 
El, and EI, (the weight, Archimedes, aerodynamic, hydrodynamic, etc.) /2/; Crol is a (6 x 6) 
matrix with (3 X 6) rows of the form ]]<mr")r 1011, /I<v~“>~ I <o,o>* 1); * is the symbol denoting 

a derivative in the E, system of coordinates attached to the body. 
In deriving relations (4)-(6) we have used the kinematic equation 

Lf* = L WI I*. = L,ll [ (el*)] cp, d 3 

substituting relations (5) and (6) into (4) and carrying out the necessary reduction, 
we obtain the equation of motion in the inertial fluid of the body supporting the dynamically 
unbalanced and asymmetric flywheels in quasivelocities 

Here 

Using the equations of kinematics/2, 3, 5/ 

vlo' = A1“'qlo*, V,o' = A,~‘q~. + DIo’qlO’ (10) 

we transform Eq.(8) to the form 

I,oq;” + J1oq,O’ + Iq” + Jq’ = F, (11) 

I,” = K,‘A,O’, J,O = K1’Dlo’ + M,‘A,“’ 

I= II 1% I 1, I . . . I L II 
J=IIJ,IJ,l...lJmII 
q’ = 11 (F2*, cps’, . ., ‘Pm’ IIT, q” = II ‘02”? Q”, . * .t T”” IIT 

Thus the presence on the carrier of dynamically unbalanced and asymmetric flywheels leads 
to the following changes in the equations of motion of a free rigid body /l/: the Mises matrix 
8r'of the carrier is increased by the sum of the matrices 8,' generated by the operators L,'r 
in E,, (the second relationin (2)); an analogous effect in the term(P,OrK,r ofthematrix M1l /9/; 
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the appearance in the matrix Ml1 of the matrix Kr"* which takes into account the inertial 
effects connected with the dynamic inbalance and asymmetry of the flywheels (6); the appearance 
of terms of the type Ig", Jp'. The presence of an inertial medium leads to an increase in the 
inertia matrix of the system K,'(Z) by the matrix of attached masses of the body and the 
instruments. 

Andlysing the above changes in Eqs.(B) and (11) we find, that the motion of the carrier 
in the inertial medium, where the flywheels are dynamically unbalanced, differs essentially 
from the motion of the usual gyrostat (without taking the above factors into account /7, 8/). 
Having chosen in the latter case (red'= 0,A 111’ =O) the central axes of inertia of the whole 

system as, E,, we obtain two (3 x 3) matrix equations modelling the independent translational 
and rotational motions of the gyrostat. It is usually the latter that is of practical interest 
/7, 81. 

When the medium is inertial and the flywheels are dynamically unbalanced, the translational 
and rotational motions of the carrier are inertially inseparable from each other, irrespective 
of the choice of the attached coordinate system. The pxesence of the last two matrices in 
the matrix Krr(2) and of the matrix K,'*(6) in the matrix M,' (9), implies that motion 
along any of the generalized coordinates qlo for an arbitrarily short time generates a motion 
along the remaining coordinates of this vector. The effect remains in force in special cases 
(an inertial medium only, or dynamic inbalance of the flywheels only). we note that all terms 
shown in (8) and (11) have an oscillatory character (through the matrix Ls), with variable 
frequency depending on the frequency of rotation of the flywheels. 

Using Eq.(ll) we can obtain a mathematical formulation of the problem of controlling the 
oscillatory motion of the carrier caused by the inertial effects of the dynamically unbalanced 
rotating flywheels. 

Let us rewrite Eq.(ll) in the form 

Iq” + Jq’ = P (tf, P (t) = F,’ - I?qy (t) - 5291” (t) Pf 
where qlO(t) is the given motion of the carrier. 

If dim q< 6 (the number of flywheels is <6), then the problem has no solution 
(except in some special cases of the motion 9,O 0)). If rjimq = 6, then the problem has a 
unique solution where detI+ 0. 

Let dimq = l> 6. In this case the problem of determining the required law of variation 
of the vector k(t) reduces to the classical theory of optimal control in which the methods 
of solution are well-known. Let us divide the vector g'into two parts, one containing six 
independent coordinates q+ E R,, and the other ( j- 6 ) independent coordinates 4-E RI-,, 

q = II q-7 q+IF. We choose, as the control vector, the vector of acceleration of the independent 
coordinates (which can be manipulated as required) u = (I_". In this case the problem has the 
following form when d&I_+ 0: 

f = f (5, 74 t), x (to] = I* ($3) 

5 = iI% Q’ IIT, J (x, u)- min 
U = q_“, 3 (t) E Em 11 (t) cz E, 

f (I, u, 4 = II q’, 9” IIT = II 9’7 4”, q+,” II= = 
II rl’, u, I+-* (P (t) - 1-u - Jn’) IIT 

Here I,, I_ are the parts of the matrix I. corresponding to the parts q+“, q_” of the 
vector 9"; E,, E,, are the domains of admissible values of the vectors x,u; 3(zl u) isafunctional. 

we must remember that (8) and (11) are the equations of motion not of the system, but 
of the body of the carrier. Therefore, the solution of problem (13) yields only a programmed 
motion of the flywheels, which can be used to design the force control modules (FCM) of the 
system. 

The real motion of the system acted upon by the FCM according to the above program can 
be studied using additional appropriately chosen equations from 12, 3/. 
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AN ANISOTROPICALLY ELASTIC SPHERE IN FREE MOTION* 

V.V. NOVIKOV 

Corrections are found to the inertial tensor components of a rotating 
sphere in the case of small anisotropy of its elastic properties of 
general form. Singularities in the behaviour of the freely rotating 
sphere due to the intrinsic elasticity are discussed in specific examples. 
Without making any assumptions on the smallness of the anisotropy, the 
strain is calculated for a sphere having a plane of isotropy. It was 
shown /l, 2/ in the problem of the motion of a solid deformable body 
around a centre of mass under the simplifying assumptions that the natural 
vibration frequencies greatly exceed the angular velocity while the 
internal friction forces ensure sufficiently rapid damping of the natural 
vibrations, that taking account of the intrinsic elasticity of the body 
is equivalent to the action of a moment on it proportional to the fourth 
power of the angular velocity component and calculated by means of the 
solution of the quasistatic problem of the deformation of a rotating body. 

The moment corresponding to the influence oftheintrinsic elasticity 
has been calculated /3/ for a body close in shape to a sphere. The 
homogeneous anisotropically elastic sphere in free motion considered in 
this paper is still another example when the solution of this problem 
can be obtained by analytic means. The representation of the behaviour 
of this system can turn out to be useful when considering questions of the 
earth's motion in connection with the hypothesis that the earth has the 
features of a complex crystal. 

Let us represent the stress tensor in the form 

Uij= hn1$,j + 2Puij + CijnmU*n* 

where uij is the strain tensor, hand p are Lam& constants, and ui are the components of the 

displacement vector. The tensor of the elastic constants cljnm satisfies the following 
symmetry conditions /5/: 

Cifnm= cjinm= Cijmn=Cnrnij 

and has 21 indepdent components in the most general case of an anisotropic linearly elastic 
body. 

We shall consider only the almost Eulerian motionsofa deformable body. This is possible 
if it is sufficiently rigid and the vibrations of the elastic body that occur damp out rapidly 

/2/. The elastic constants are such that the following inequalities are satisfied 

e < 6 < 1 (E = pRZl(pLt*2)) (1) 

where p is the density, R is the radius of the sphere, t,is the characteristic time of sphere 
motion as a whole, and 6 is the ratio of the greatest of the elastic constants Cijnn, to 
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